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Abstract

An approach for modeling uncertainty in aircraft position and surveillance informa-
tion is proposed. The approach is used to provide an upper bound to the probability
of missed alerts in state-based conflict detection algorithms. This bound yields an ana-
lytical definition of safety buffers that guarantees that, under well-defined assumptions
on aircraft state information uncertainty, state-based conflict detection algorithms do
not miss any conflicts. The results are presented as theorems, which were formally
proven using a mechanical theorem prover.

1 Introduction

Advances in global positioning systems and communication technology enable air traffic con-
cepts where the aircraft separation requirement relies on computer-based conflict detection
and resolution (CD&R) systems [14]. In some of these concepts, the conflict management
functionality is structured in several layers [24]. In the upper layers, strategic CD&R systems
provide advance separation assurance functionality that takes into account long lookahead
times, flight plans, special airspace restrictions, winds, and weather [13]. The lower layers
typically deal with tactical decisions for short lookahead times. Since the lower layers provide
the last line of defense in a multi-layered concept, tactical CD&R systems are considerably
simpler and more efficient than strategic systems.

During recent years, several state-based tactical CD&R algorithms have been proposed [1,
6, 8, 11, 16]. State-based algorithms probe and solve conflicts by only using aircraft state
information, i.e., the current position and velocity vectors of the aircraft, and a nominal mass-
point model of aircraft trajectories. These assumptions allow for efficient implementations
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that rely on analytical methods. To accomodate for the difference between the actual aircraft
trajectories and the predicted straight line trajectories used by these methods, it is generally
assumed that state-based CD&R algorithms are frequently executed. Typically, state-based
CD&R approaches are used in airborne concepts [11] where they are executed in each aircraft
as frequently as position and surveillance information is updated, e.g., 1 Hz.

Given the safety-critical nature of tactical separation assurance systems, some state-based
CD&R algorithms [6, 9, 15, 16] have been formally analyzed for safety properties such as in-
dependence, i.e., minimum separation is guaranteed when one of the aircraft maneuvers, and
implicit coordination, i.e., minimum separation is guaranteed when both aircraft maneuver
with no explicit coordination between them [7]. These safety properties highly depend on
the assumption that aircraft state information is accurately known.

The position provided by global navigation satellite systems like Global Positioning Sys-
tem (GPS) is accurate up to a few meters (about 10m) 1 and surveillance information systems
such as Automatic Dependent Surveillance-Broadcast (ADS-B) loses messages due to signal
attenuation [23]. Errors in position and velocity negatively affect the safety performance
of state-based CD&R systems. To mitigate these effects, state-based CD&R algorithms are
used with safety buffers that increase the minimum separation distance between the aircraft.
These safety buffers decrease the number of missed alerts but increase the number of false
alert. Usually, appropriate values for safety buffers are determined by experimentation and
simulation.

This paper presents the formal verification of safety buffers for conflict detection. Specific
formulas are given for safety buffers, and a theorem is stated that represents a proved result
that these formulas are correct and therefore satisfy a key probabilistic property. Section 2
contains formal defintions related to conflict detection algorithms. Section 3 models GPS
and ADS-B errors with random variables on an arbitrary probability space. It is proved
in that section that given random variables for positions and velocities, conflict between
aircraft is also a random variable. Section 4 gives specific formulas for safety buffers for
distance and time that can be used to provide upper bounds on the probability that a conflict
detection algorithm will incorrectly miss a conflict. These formulas are then used to give
safety buffers that guarantee that there are no missed conflicts, in the case where absolute
bounds are known on position and velocity vectors for two aircraft. Finally, Section 5 presents
a table that contains specific upper bounds on the probability that a correct conflict detection
algorithm will miss a given conflict. This table depends on the document DO-242A [23],
which specifies several system performance confidence-levels that are to be included in ADS-
B messages detailing how precise and trusted the contained state information is.

The mathematical development presented in this paper has been specified and formally
verified in the Prototype Verification System (PVS) [17]. PVS is a proof assistant that
consists of a specification language, based on classical higher-order logic, and a mechanical
theorem prover for this logic. The PVS specification language allows for the precise definition
of mathematical objects such as functions and relations, and the precise statement of logical
formulas such as lemmas and theorems. Proofs of logical formulas can be mechanically

1See http://www.kowoma.de/en/gps/errors.htm.
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checked using the PVS theorem prover, which guarantees that every proof step is correct
and that all possible cases of a proof are covered. All lemmas and theorems presented in this
paper have been mechanically checked in PVS. For the sake of simplicity, only proof sketches
of the main results are presented in the paper. The development presented here, including
all definitions and formal proofs, is part of the Airborne Coordinated Conflict Detection and
Resolution (ACCoRD) framework [16].

The use of a formal language, e.g., in this case the specification language of PVS, enforces
rigorous definitions of mathematical objects, where all dependencies are clearly specified.
This level of rigor guarantees a very high confidence on the correctness of the results presented
in this paper. However, this also makes the notation heavy and difficult to read for the non-
expert reader. For this reason, the work presented here uses standard mathematical notation
and does not assume that the reader is familiar with the syntax or semantics of the PVS
language.

2 State-Based Conflict Detection

Pairwise state-based conflict detection systems use the state information of two aircraft,
which here are referred to as the ownship and the intruder, to detect conflicts between them.
The state information for an aircraft includes its current position and velocity, and these
are represented by points and vectors in a Cartesian coordinate system. For simplicity, this
paper considers the two-dimensional space R2. However, the results can be extended to R3.

Aircraft trajectories are represented by a point moving at constant linear speed. The
vectors so,vo, si, and vi will be used to represent the ownship’s current position and velocity
and the intruder’s current position and velocity (at time t = 0), respectively. Thus, the states
of the ownship and the intruder at time t are given by so + tvo and si + tvi, respectively.
In later sections, so,vo, si, and vi denote random variables with values in R2 to account for
uncertainty in these vectors.

Under nominal operations, aircraft are required to maintain a certain separation. In the
two-dimensional airspace, the separation requirement is specified by a minimum horizontal
distance D. A conflict between the ownship and the intruder aircraft occurs when there is
a time t ∈ [0, T ] at which the horizontal distance between the aircraft is projected to be less
than D, i.e.,

‖(so + tvo)− (si + tvi)‖ < D.

The time T is called the lookahead time. Typical values for D and T are 5 nautical miles
and 5 minutes, respectively. In this paper these values are considered to be parameters.

Since (so + tvo) − (si + tvi) = (so − si) + t (vo − vi), the predicate that characterizes
conflicts can be defined in terms of the relative vectors s = so − si and v = vo − vi, i.e.,
the relative position and velocity vectors, respectively, of the ownship with respect to the
intruder. The predicate conflict?, which has as parameters the horizontal distance D, the
lookahead time T , and the relative position and velocity of the aircraft, is formally defined
as follows.

conflict?(D,T, s,v) ≡ ∃ t ∈ [0, T ] : ‖s + tv‖ < D.
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A conflict detection system is an algorithm that computes whether the predicate conflict?
holds for the actual states of two aircraft. A pairwise approach to conflict detection is as-
sumed where each aircraft uses a conflict detection algorithm. The approach proposed in this
paper takes the point of view of the ownship. However, the situation is symmetric from the
point of view of the intruder aircraft. Formally, a two-dimensional conflict detection algo-
rithm is defined as a function cd with parameters D and T , written in subscript, that takes
as arguments the state information of two aircraft. It returns a value in B = {True, False}
that represents whether or not a conflict has been detected.

The state information used by a conflict detection algorithm is provided by positioning
and surveillance systems such as GPS and ADS-B. In order to distinguish the actual states of
the aircraft, represented by so,vo, si,vi, from the measured states provided by these systems,
the measured position and velocity of the ownship and intruder aircraft will be represented
by the vectors sm

o ,v
m
o and sm

i ,v
m
i , respectively.

Since conflict detection algorithms are safety critical applications, it is imperative that
they compute an answer that is trustworthy. A conflict detection algorithm is said to be
correct if in the absence of measurement errors the algorithm does not issue false alerts and
does not miss any alerts. Formally, a conflict detection algorithm cd is correct if for all
vectors so,vo, si,vi, s

m
o ,v

m
o , s

m
i , and vm

i , with sm
o = so,v

m
o = vo, s

m
i = si, and vm

i = vi, then

cdD,T (sm
o ,v

m
o , s

m
i ,v

m
i ) = True⇐⇒ conflict?(D,T, so − si,vo − vi). (2.1)

In theory, conflict detection algorithms are designed to be correct, e.g., the conflict detec-
tion algorithm CD2D, which is part of NASA’s Airborne Coordinated Conflict Resolution and
Detection (ACCoRD) framework [16], satisfies this property. In practice, the existence of
uncertainty in surveillance information implies that the equalities sm

o = so,v
m
o = vo, s

m
i = si,

and vm
i = vi may not hold. Thus, conflict detection algorithms, including correct algorithms

such as CD2D, detect conflicts with inexact information, and they can therefore have false
and missed alerts. Therefore, CD&R algorithms are generally used with slightly increased D
and T values to accommodate for state information uncertainty. The added values are called
safety buffers, and their sizes are often determined by experimentation and simulation.

Increasing the size of these safety buffers will reduce number of missed alerts. However,
as the size of the safety buffers increases, the number of false alerts increases as well. Missed
alerts are an obvious cause of safety concerns. False alerts have also safety implications as
they may diminish the confidence that crew members and air traffic controllers have on the
separation assurance logic. Appropriate choices of safety buffers are crucial to the safety
performance of a conflict detection system.

This paper provides analytical definitions of safety buffers and sufficient conditions un-
der which correct conflict detection algorithms can be used without missing alerts. More
precisely, definitions of positive numbers ψ and λ are provided such that under well-defined
hypotheses on the information uncertainty, it can be proved that

conflict?(D,T, so − si,vo − vi) =⇒ cdD+ψ,T+λ(s
m
o ,v

m
o , s

m
i ,v

m
i ) = True.
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3 State Information Uncertainty

This paper considers two kinds of uncertainties: uncertainty due to measurement errors in
global positioning systems such as GPS, and uncertainty due to infrequent traffic information
updates from surveillance systems such as ADS-B. Concretely, state information uncertainty
is modeled through random variables that represent measurement errors due to (1) GPS
position inaccuracy and (2) dropped ADS-B messages. Here, GPS and ADS-B are used for
illustration purposes. The approach presented here could be adapted for uncertainty due to
devices other than GPS and broadcast methods other than ADS-B.

Recall that a random variable is a function f : Ω → X, where (Ω, σ(Ω)) is a probability
space, i.e., Ω is a set, σ(Ω) is a σ-algebra on the set Ω (a set of subsets of Ω), and there is
a probability function P that maps elements of σ(Ω) to probabilities in the interval [0, 1];
cf. [21]. The set X is any measure space, and the function f must be measurable, in the
sense of real analysis [22]. In what follows, the same probability space (Ω, σ(Ω)) will be
used to model all of the random variables, e.g., GPS inaccuracy, dropped ADS-B message,
conflict detection, etc. This is mathematically valid because even if two random variables are
modeled with different probability spaces for their respective domains, equivalent random
variables can be constructed whose domains are the same probability space. In fact, any
random variable has an equivalent representation as a random variable with domain given
by the uniform distribution on the interval [0, 1]; cf. [5].

Given a subset S of Ω such that S ∈ σ(Ω), the probability function P gives the probability
P (S) of S. Any random variable f : Ω → X induces a probability Prob on measurable
subset of X that is defined by Prob(Y ) = P ({χ ∈ Ω | f(χ) ∈ Y }), where Y is measurable.
In addition, if X is a subset of the real numbers, then it is standard notation to define
Prob(f ≥ r) = P ({χ ∈ Ω | f(χ) ≥ r}) for r ∈ R.

3.1 Modeling Uncertainty with Random Variables

Each aircraft uses GPS to determine its current state, i.e., its position, so or si, and velocity
vector, vo or vi. ADS-B broadcasts this information to the airspace at regular intervals, and
the interval between ADS-B broadcasts will be denoted α. Typically, the ADS-B system
will be configured to broadcast this information once per second, i.e., α = 1 second. Due to
signal attenuation, it is possible that several consecutive position and velocity updates from
the intruder have been dropped and were therefore not received by the ownship. This results
in greater uncertainty in the values of the intruder’s current state, i.e., si and vi. ADS-B
message loss due to signal attenuation can be modeled as random variable:

A : Ω→ N,

where (Ω, σ(Ω)) is a probability space. The random variable A returns the number of
consecutive ADS-B messages from the intruder that were not received by the ownship, since
the last received message from the intruder. It is important to note that the length of time
since the last ADS-B update from the intruder was received by the ownship is given by
multiplying the return value of A by α. This length of time is modeled by the random

5



variable Υ: Ω → R that maps χ ∈ Ω into αA(χ), where the units of the domain are
implicitly the units of α.

Standard inaccuracies in GPS position predictions, which are also used to predict veloci-
ties, imply that the measured positions sm

o , s
m
i and velocities vm

o ,v
m
i may have errors. Thus,

the actual positions so, si and velocities vo,vi are all modeled as random variables from Ω
to R2:

so, si,vo,vi : Ω→ R2.

The vectors sm
i and vm

i represent the intruder’s reported position and velocity vectors,
respectively, from the last ADS-B signal that was received by the ownship, and the vectors
sm
o and vm

o represent the ownship’s measured position and velocity at that time. If the
current time is t = 0, then the time at which sm

o , s
m
i ,v

m
o ,v

m
i were measured is given by

the random variable Υ. Thus, if it is known that there are no errors in the measurements
sm
o , s

m
i ,v

m
o ,v

m
i , then the equalities so − Υvo = sm

o , si − Υvi = sm
i , vo = vm

o , and vi = vm
i

all hold as random variables Ω→ R2. The random variables Υ, vo, and vi have units given
by time, speed, and speed, respectively.

This paper focuses on the case where there are possible errors in the measurements
sm
o , s

m
i ,v

m
o ,v

m
i , modeled by the random variables so, si,vo,vi. In this case, the absolute

values (i.e. errors) |(so − Υvo) − sm
o |, |(si − Υvi) − sm

i |, |vo − vm
o |, and |vi − vm

i | are
all random variables Ω → R≥0, and they therefore induce probabilites on subsets of R≥0,
respectively. Thus, in the following sections, the probabilites

Prob(‖(so −Υvo)− sm
o ‖| ≥ ao),

Prob(‖(si −Υvi)− sm
i ‖ ≥ ai),

Prob(‖vo − vm
o ‖ ≥ bo),

Prob(‖vi − vm
i ‖ ≥ bi)

will be used to bound the effects of GPS measurement errors on conflict detection. Here, the
distances ao and ai and the speeds bo and bi are standardized navigation accuracy parameters.
For instance, ao = ai = 30 m and bo = bi = 0.3 m/s correspond to navigation accuracy
categories NACP 9 and NACV 4, respectively, as specified in [23]. This specification is for 95
percent confidence intervals on the position and velocity vectors of aircraft, within the given
ranges. Other choices for ao, ai, bo, and bi may be considered, and thus in the next sections
they are simply treated as parameters.

Finally, givenD and T , a conflict between the ownship and the intruder will be modeled as
the random variable CD,T : Ω→ B that maps χ ∈ Ω into conflict?(D,T, so(χ)−si(χ),vo(χ)−
vi(χ)).

The fact that the function CD,T is a random variable is not immediately obvious. In fact,
if κ is any boolean function on four vectors, it is not necessarily true that κ(so,vo, si,vi) is
a random variable on Ω. While it is true that scalar multiples, sums, dot products, cross
products, etc. of random variables Ω → R2 are also random variables, the definition of the
random variable CD,T involves an existential quantifier (i.e. ∃) in the definition of conflict?.
However, the following lemma has been formally proved in PVS.
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Lemma 1 The boolean function CD,T is a random variable on Ω.

Proof: The conflict detection algorithm CD2D is equivalent to the predicate conflict? (the
proof of this fact is provided in the PVS formal development available from [16]). Thus, the
predicate conflict? can be replaced by CD2D in the definition of CD,T without changing the
function. It therefore suffices to show that the function that maps an element χ of Ω to
CD2DD,T (so(χ),vo(χ), si(χ),vi(χ)) is a random varible. This expression is of the form

CD2DD,T (so(χ),vo(χ), si(χ),vi(χ)) =

{
f(χ) if g(χ) = 0,

h(χ) if g(χ)/ = 0,

where f, h : Ω → B and g : Ω → R are all random variables. This function is equal to
f · CharE + h · Char¬E, where E = {χ ∈ Ω | g(χ) = 0}, ¬E is the complement of E, and
Char denotes the characteristic function of a given set. Since the function g is a random
variable, E and ¬E are by definition elements of σ(Ω), and so their characteristic functions
are random variables. Hence, the function f · CharE + h · Char¬E is a sum of products of
random variables, and it is therefore a random variable as well. �

Since CD,T is a random variable, the probability that the two aircraft are actually in
conflict is formally defined as

Prob(conflict?(D,T, so − si,vo − vi)) = P ({χ ∈ Ω | CD,T (χ) = True}).

3.2 Distribution of the ADS-B Random Variable

Under the assumption that there is no ADS-B signal interference due to multiple intruder
aircraft, the distribution of ADS-B message loss A follows a Poisson distribution as discussed
in [3]. The probability that a given ADS-B message from the intruder aircraft will not
be received by the ownship, which is equal to p({0}), is (approximately) given by 1 −(
r
r0

)k
with r ≤ r0, where k = 6.4314 and r0 = 96.6 nmi [3]. The number r is the current

distance between the two aircraft. Thus, if it is known that the ownship and the intruder
are no greater than 60 nmi apart, a reasonable distance for most commercial aircraft given
short lookahead times such as 3 minutes, then the probability that a given message will be
received is bounded below by 0.953, where in the formal language of random variables, this
is expressed as P ({χ ∈ Ω |A(χ) = 0}) ≥ 0.953. The specific probability 0.953 is not critical
to the constructions in this paper. Thus, the probability that a given ADS-B message sent
by the intruder will be received by ownship will be denoted by the variable η:

η = P ({χ ∈ Ω |A(χ) = 0}).

The key assumption that can be used to deduce that A follows a Poisson distribution is
that whether any particular ADS-B message from the intruder aircraft is received by the
ownship is independent from whether any other, different, ADS-B message from the intruder
is received, for i ≥ 0. This implies that for each i ≥ 0, the probability that the last ADS-B
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message sent by the intruder that was received by the ownship was the i+ 1-st message ago
(sent α · i in the past) is given by

P (Ai) = η(1− η)i, (3.2)

where
Ai = {χ ∈ Ω |A(χ) = i}.

This is because the last i messages (sent 0, α1, . . . and αi−1 seconds ago) have been dropped,
which has a probability of (1− η)i of occurring, and the message sent exactly i-seconds ago
was not dropped, which has a probability of η of occurring.

4 Safety Buffers

As noted in previous sections, the correctness of a conflict detection algorithm cdD,T can be
affected by errors in GPS measurements or delays in ADS-B message updates. To counteract
the effects of these errors on the conflict detection probe cd, a positive distance ψ and a
positive time λ can be artificially added to the distance D and the time T when they are
used as parameters in cd. That is, to make the algorithm more likely to return True, the
parameters D+ψ and T+λ can be used in place of D and T in the algorithm cd. The distance
ψ and the time λ are called safety buffers because the algorithm cdD+ψ,T+λ is more likely to
return True than cdD,T , and hence they are more conservative from a safety standpoint.

4.1 Probability of Conflict

Given the use of safety buffers ψ and λ in the conflict detection algorithm cd, as described
above, a missed alert occurs when cdD+ψ,T+λ(s

m
o ,v

m
o , s

m
i ,v

m
i ) returns False but the aircraft

are actually in conflict. So an upper bound for the probability of a missed alert is actually
an upper bound on the probability Prob(conflict?(D,T, so− si,vo−vi)) that the aircraft are
actually in conflict (cf. Section 3.1). Define G to be the set of χ ∈ Ω where at least one of
the following inequalities holds.

‖(so(χ)− αA(χ)vo(χ))− sm
o ‖| ≥ ao,

‖(si(χ)− αA(χ)vi(χ))− sm
i ‖ ≥ ai,

‖vo(χ)− vm
o ‖ ≥ bo,

‖vi(χ)− vm
i ‖ ≥ bi

Define T = {χ ∈ Ω | CD,T (χ) = True}. Note that the set Ω decomposes as an infinite
union of pairwise disjoint sets Ω =

⋃∞
i=0Ai, where Ai is defined in Section 3.2. Recall that for

a given set Z, Zc denotes the complement of Z. Then standard probabilistic manipulations
can be used to show that the probability Prob(conflict?(D,T, so − si,vo − vi)) decomposes
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as an infinite sum as follows.

Prob(conflict?(D,T, so − si,vo − vi)) = P (T )

= P (T ∩ G) + P (T ∩ Gc)

= P (T ∩ G) + P

( ∞⋃
i=0

(
T ∩ Ai ∩ Gc

))
= P (T ∩ G) +

∞∑
i=0

P (T ∩ Ai ∩ Gc).

(4.3)

This equation implies that if d is any integer (a specific number of messages), then

Prob(conflict?(D,T, so − si,vo−vi)) = P (T ∩ G) +
∞∑
i=0

P (T ∩ Ai ∩ Gc)

≤ P (G) +
∞∑
i=0

P (T ∩ Ai ∩ Gc)

≤ P (G) +
d∑
i=0

P (Ai) + P (T ∩ Ai ∩ Gc)

= P (G) +
∞∑

i=d+1

η(1− η)i +
d∑
i=0

P (T ∩ Ai ∩ Gc)

= P (G) + (1− η)d+1 +
d∑
i=0

P (T ∩ Ai ∩ Gc)

(4.4)

The number d can be chosen so that the finite sum is a good approximation to the infinite
sum (since (1−η)d+1 is quite small). This equation is true for any choice of d. Formula (4.4)
has been formally proved in PVS and can be found in the ACCoRD development at [16].

4.2 Probability of a Missed Alert

Suppose now that confidence intervals are known for the accuracy of the random variables
so, si,vo, and vi. That is, suppose that probabilities pso, pvo, psi, and pvi are known such that

Prob(‖(so −Υvo)− sm
o ‖| ≥ ao) ≤ pso,

Prob(‖(si −Υvi)− sm
i ‖ ≥ ai) ≤ psi,

Prob(‖vo − vm
o ‖ ≥ bo) ≤ pvo,

Prob(‖vi − vm
i ‖ ≥ bi) ≤ pvi.

It follows immediately that

P (G) ≤ pso + psi + pvo + pvi. (4.5)

9



Examples of such bounds pso, pvo, psi, and pvi on these probabilities can be found in DO-
242A [23], which specifies several system performance confidence-levels that are to be in-
cluded in ADS-B messages, and details how precise and trusted the contained state infor-
mation is.

Formulas (4.4) and (4.5) imply that if P (T ∩Ai ∩Gc) = 0 for i ≤ d, then the probability
that cdD,T (so, si,vo,vi) = True is bounded above by pso + psi + pvo + pvi + (1− η)d+1. The
following lemma presents particular choices of the safety buffers ψ and λ that can be used
to ensure that this bound is satisfied. The lemma refers to the distances ao and ai and
the speeds bo and bi that define the probabilities pso, pvo, psi, pvi. It also uses the time α,
which is the regular interval at which ADS-B messages are sent by the intruder aircraft. The
following lemma has been formally proved in PVS.

Lemma 2 Let sm = sm
o − sm

i , vm = vm
o − vm

i . For any integer d ≥ 0, if

1. ‖vm‖ > bo + bi,

2. ` = (‖sm‖+ ao + ai + αd · (‖vm‖+ bo + bi))/(‖vm‖ − bo − bi),

3. ψ = ao + ai + (min(T, `) + αd)(bo + bi), and

4. cdD+ψ,T+αd(s
m
o ,v

m
o , s

m
i ,v

m
i ) = False,

then, for j ∈ {0, . . . , d},
P (T ∩ Aj ∩ Gc) = 0.

Proof: It suffices to prove that, given the hypotheses of this lemma, T ∩Aj ∩Gc is empty.
Suppose by way of contradiction that χ ∈ T ∩ Aj ∩ Gc. Since χ ∈ T , it follows that
cdD,T (so(χ), si(χ),vo(χ),vi(χ)) = True. Since χ ∈ Aj, A(χ) = j. Finally, since χ ∈ Gc, the
equations ‖(so(χ)−αjvo(χ))−sm

o ‖| < ao, ‖(si(χ)−αjvi(χ))−sm
i ‖ < ai, ‖vo(χ)−vm

o ‖ < bo,
and ‖vi(χ)− vm

i ‖ < bi are all satisfied.
As in Section 2, let s and v denote the relative position and velocities s = so − si and

v = vo−vi. It is easy to see that ‖s(χ)+tv(χ)‖2 is a quadratic in t that attains its minimum
at t = −s(χ) · v(χ)/‖v(χ)‖2. Thus, the fact that cdD,T (so(χ), si(χ),vo(χ),vi(χ)) = True

(since χ ∈ T ) implies that there exists t∗ ∈ [0,min(T,−s(χ) · v(χ)/‖v(χ)‖2)] such that
‖s(χ) + t∗v(χ)‖ < D. Then t∗ + αj ∈ [0,min(T,−s(χ) · v(χ)/‖v(χ)‖2) + αd] and since
s = so − si and v = vo − vi, it suffices to show that ‖sm + (t∗ + αj)vm‖ < ψ + D, which
is a contradiction, since cdD+ψ,T+αd(s

m
o ,v

m
o , s

m
i ,v

m
i ) = False. If it can be proved that
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t∗ + αj ≤ min(T, `) + αd, then the result will follow, since

‖sm + (t∗ + αj)vm‖
= ‖(sm

o − sm
i ) + (t∗ + αj)(vm

o − vm
i )‖

= ‖(sm
o − sm

i ) + (t∗ + αj)(vm
o − vm

i )− (s(χ) + t∗v(χ)) + (s(χ) + t∗v(χ))‖
= ‖(sm

o − (so(χ)− αjvo(χ)))− (sm
i − (si(χ)− αjvi(χ))) + (t∗ + αj)(vm

o − vo(χ))

− (t∗ + αj)(vm
i − vi(χ)) + (s + t∗v(χ))‖

≤ ‖sm
o − (so(χ)− αjvo(χ))‖+ ‖sm

i − (si(χ)− αjvi(χ))‖
+ (t∗ + αj)‖vm

o − vo(χ)‖+ (t∗ + αj)‖vm
i − vi(χ)‖+ ‖s + t∗v(χ))‖

= ‖sm
o − (so(χ)− αA(χ)vo(χ))‖+ ‖sm

i − (si(χ)− αA(χ)vi(χ))‖
+ (t∗ + αj)‖vm

o − vo(χ)‖+ (t∗ + αj)‖vm
i − vi(χ)‖+ ‖s + t∗v(χ))‖

< ao + ai + (t∗ + αj)bo + (t∗ + αj)bi +D

≤ ao + ai + (t∗ + αd)(bo + bi) +D

≤ ψ +D.

Since t∗ + αj ∈ [0,min(T,−s(χ) · v(χ)/‖v(χ)‖2) + αd] and αj ≤ αd, it therefore suffices
to prove that −s(χ) · v(χ)/‖v(χ)‖2 ≤ `. The Cauchy-Schwartz inequality implies that
−s(χ)·v(χ) ≤ ‖s(χ)‖·‖v(χ)‖, so it suffices to prove that ‖s(χ)‖/‖v(χ)‖ ≤ `. This inequality
can be verified by proving the following two inequalities.

‖s(χ)‖ ≤ ‖sm‖+ ao + ai + αd · (‖vm‖+ bo + bi)

‖v(χ)‖ ≥ ‖vm‖ − bo − bi
These two formulas follow from basic applications of the triangle inequality and the facts
that ‖(so(χ) − αjvo(χ)) − sm

o ‖| < ao, ‖(si(χ) − αjvi(χ)) − sm
i ‖ < ai, ‖vo(χ) − vm

o ‖ < bo,
‖vi(χ)− vm

i ‖ < bi, and αj ≤ αd. �
The following theorem uses Lemma 2 to give an upper bound on the probability of a

missed alert, if the safety buffers ψ and αd given in that lemma are used. This theorem
follows trivially from that lemma and Formula (4.4) and has also been proved in PVS.

Theorem 1 Let sm = sm
o − sm

i , vm = vm
o − vm

i . Suppose that

1. d ≥ 0, ‖vm‖ > bo + bi

2. ` = (‖sm‖+ ao + ai + αd · (‖vm‖+ bo + bi))/(‖vm‖ − bo − bi)

3. ψ = ao + ai + (min(T, `) + αd)(bo + bi)

4. λ = αd

5. cdD+ψ,T+λ(s
m
o ,v

m
o , s

m
i ,v

m
i ) = False.
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The probability of a missed alert, i.e. that cdD,T (so, si,vo,vi) = True, is no greater than
pso + pvo + psi + pvi + (1− η)d+1, where η is the the probability that a given ADS-B message
sent by the intruder will be received by ownship.

A missed alert is a conflict that is not detected. Artificially increasing the distance D
and the lookahead time T in the conflict probe cd will make missed alerts less likely. The
theorem above gives specific formulas for safety buffers that can be used to ensure that the
probability of a missed alert is sufficiently small. The speeds bo and bi, and the probabilities
pso, pvo, psi and pvi are variables in this theorem and can be changed based on the application.
Formula (4.5) expresses the relationships between ao, ai, bo, bi, pso, pvo, psi and pvi. Given these
inputs, the associated upper bound for the probability of a missed alert is

pmissed−alert = pso + pvo + psi + pvi + (1− η)d+1. (4.6)

In the equation above, the amount ψ that D should be artificially increased to ensure
that the probability of a missed alert is less than pmissed−alert is given by

ψ = ao + ai + (min(T, `) + αd)(bo + bi), (4.7)

where as above, α denotes the time period between consecutive ADS-B broadcasts by the
intruder aircraft. It should be noted that Formulas (4.7) and (4.6) imply that if the velocity b
dominates the calculation of ψ, then as ψ increases, d increases as well, and so the probability
of a missed alert decreases.

The following is a formulation of Theorem 1 in PVS. The purpose of including the state-
ment here is not technical, but rather so that the reader can conceptualize what is meant
by a statement that is proved in PVS. The specifics of the PVS notation are unimportant,
so most of the technical details are omitted.

Theorem1 : THEOREM

sm = som-sim AND vm = vom-vim AND norm(vm)>bo+bi AND

P(GsetPosition(so,som,vo,alpha,A,ao)) <= prso AND

P(GsetVelocity(vo,vom,bo)) <= prvo AND

P(GsetPosition(si,sim,vi,alpha,A,ai)) <= prsi AND

P(GsetVelocity(vi,vim,bi)) <= prvi AND

l = (norm(sm)+ao+ai+(alpha*d)*

(norm(vm)+bo+bi))/(norm(vm)-bo-bi) AND

psi = ao+ai+(min(T,l)+alpha*d)*(bo+bi) AND

cd(D+psi,T+alpha*d,som,vom,sim,vim)=FALSE AND

adsb_distr?(eta)(A)

IMPLIES

P({chi:Omega | conflict_rv(D,T,so,vo,si,vi)(chi) = True})

<= prso+prvo+prsi+prvi+expt(1-eta,d+1)
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4.3 Special Case: Absolute Bounds

The special case when absolute bounds on the positions and speeds of the ownship and the
intruder are known and when there are no messages lost is considered next. That is, rather
than letting so, si,vo,vi denote random variables, it is assumed in this section that these are
positions and velocities, respectively (elements of R2). It is further assumed that there are
no dropped ADS-B messages. Thus, each of the equations ‖so − sm

o ‖ < ao, ‖si − sm
i ‖ < ai,

‖vo−vm
o ‖ < bo, and ‖vi−vm

i ‖ < bi is satisfied. In this case, Theorem 1 gives a safety buffer
ψ for the separation distance D that ensure no missed alerts, assuming that there are no
information delays such as dropped ADS-B messages. Thus, in the following corollary, each
of the probabilities pso, pvo, psi, and pvi and the integer d, all occuring in the statement of
Theorem 1, are zero.

Corollary 1 Let sm = sm
o − sm

i , vm = vm
o − vm

i . Suppose that

1. ‖vm‖ > bo + bi,

2. ` = (‖sm‖+ ao + ai)/(‖vm‖ − bo − bi),

3. ψ = ao + ai + min(T, `)(bo + bi), and

4. conflict?(D,T, s,v) holds.

Then, cdD+ψ,T (sm
o ,v

m
o , s

m
i ,v

m
i ) = True.

Corollary 1 is proved in PVS by using Theorem 1 with α and d both equal to 0. The statement
of that theorem depends on a probability space Ω, but it is true for any choice of Ω. To
prove Corollary 1, the trivial probability space (Ω, σ(Ω)), where Ω = {1}, σ(Ω) = {φ, {1}},
P (φ) = 0, and P ({1}) = 1, is used.

It may be the case that instead of bounds on the measurement errors of the velocity
vectors vo and vi, bounds are known on the errors in the measurements of the ground
speeds ‖vo‖ and ‖vi‖ and track angles track(vo) and track(vi) of the two aircraft. This may
be the case when velocity information is broadcast not as a vector but as a track angle and
ground speed pair. In this case, error bounds on track angles and ground speeds can be used
to deduce error bounds on the velocity vectors themselves, thereby reducing this problem to
that solved by Corollary 1.

Recall that the track angle track(u) of a vector u is the angle α ∈ [0, 2π) that satisfies

u = (||u|| cosα, ||u|| sinα).

Here, εso, εsi, εαo, εgo, εαi, and εgi will denote the errors on the positions, track-angles, and
ground speeds of the ownship and the intruder, respectively, i.e.,
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||so − sm
o || ≤ εso, (4.8)

||si − sm
i || ≤ εsi, (4.9)

|track(vo)− track(vm
o )| ≤ εαo, (4.10)

|||vo|| − ||vm
o ||| ≤ εgo, (4.11)

|track(vi)− track(vm
i )| ≤ εαi, (4.12)

|||vi|| − ||vm
i ||| ≤ εgi, (4.13)

where εso and εsi are strictly positive constants that denote the position error bounds for
the ownship and intruder aircraft, respectively; εαo and εαi are strictly positive constants
that denote the track error bounds for the ownship and intruder aircraft, respectively; and
εgo and εgi are strictly positive constants that denote the ground speed error bounds for the
ownship and intruder aircraft, respectively.

Since εαo, εαi, εgo and εgi are measurement errors, they are small compared to the mea-
sured values. Therefore, the following inequalities are assumed.

εαo ≤
π

2
,

εgo ≤ ||vm
o || ,

||vm
o || (1− cos εαo) ≤ εgo.

(4.14)

εαi ≤
π

2
,

εgi ≤ ||vm
i || ,

||vm
i || (1− cos εαi) ≤ εgi.

(4.15)

Velocity errors are given in terms of track error bounds, εαo for the ownship and εαi for
the intruder, and ground speed error bounds, εgo for the ownship and εgi for the intruder.
However, as illustrated by Figure 1, velocity errors are also bounded by a circle.

The following lemma can be used to apply Corollary 1 in the case where error bounds on
track angles and ground speeds are known instead of error bounds on the velocity vectors
themselves.

Lemma 3 Let vo, vi, vm
o , vm

i , εαo, εgo, εαi, and εgi be such that they satisfy formulas (4.10)–
(4.15). It holds that

||vo − vm
o ||

2 ≤ ε2
vo,

||vi − vm
i ||

2 ≤ ε2
vi,

where

εvo =
√

2 ||vm
o || (||vm

o ||+ εgo)(1− cos εαo) + εgo2,

εvi =
√

2 ||vm
i || (||vm

i ||+ εgi)(1− cos εαi) + εgi2.
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Figure 1: Ownship Velocity Error Bounds

5 Numerical Examples

DO-242A [23] specifies several system performance confidence-levels that are to be included
in ADS-B messages detailing how precise and trusted the contained state information is.
The relevant ones to this paper are the navigation accuracy categories for position and
velocity (NACP and NACV). The 12 NACP categories define a maximum distance for errors
in position (NACP 11 is < 3 m, NACP 0 is ≥ 10 nmi); similarly the 5 NACV categories
define maximum velocity error (NACV 4 is < 0.3 m/s, NACV 0 is ≥ 10 m/s). That is, these
numbers specify the parameters a0, ai and bo, bi, respectively. Both NACP and NACV specify
that the stated values will fall within a 95% confidence interval, which is equivalent to saying
that pso, pvo, psi and pvi are all equal to 0.05.

The ADS-B model described in Section 3.2 predicts that when aircraft are 60 nmi, η ≥
0.95325 (to 5 decimal places), while if they are 20 nmi apart, η ≥ 0.99996.

Table 1 assumes both aircraft can produce data within the NACP 9 category (position
error < 30 m) and the NACV 4 category (velocity error < 0.3 m/s). These numbers along
with Equations (4.6) and (4.7) are used to compute the amount the distance that D needs
to be increased, i.e., ψ, as well the associated upper bounds on the probabilities of missed
alerts for varying choices of d. More accurate position data can reduce ψ by approximately
0.03 nmi, while less accurate data, especially velocity, can significantly increase the buffer
ψ. Recall that, as above, d denotes the number of consecutive ADS-B messages from the
intruder that were not received by the ownship, since the last received message from the
intruder. The following table assumes that ADS-B updates from the aircraft are broadcast
once per second (α = 1 second). The relative ground speed ‖vm‖ = 514 m/s corresponds
to two aircraft heading directly at each other, each traveling at approximately 500 knots.
Furthermore, ‖vm‖ = 206 m/s corresponds to aircraft approaching each other at speeds of
200 knots.

Note that Equation (4.7) compensates for situations where the projected conflict is known
to be less than the lookahead time (the l term). If both aircraft are 20 nmi from each other
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T ‖sm‖ ‖vm‖ ψ (D buffer) pmissed−alert
(s) (nmi) (m/s) (λ = 0 to 3 s) λ = 0 s λ = 1 s λ = 2 s λ = 3 s
300 60 514 0.10 nmi (190-193 m)

0.24675 0.20219 0.20010 0.20000
300 60 206 0.13 nmi (240-242 m)
180 60 514 0.09 nmi (168-170 m)
180 60 206 0.09 nmi (168-170 m)
300 20 514 0.06 nmi (103-107 m)

0.20004 0.20000 0.20000 0.20000
300 20 206 0.09 nmi (168-172 m)
180 20 514 0.06 nmi (103-107 m)
180 20 206 0.09 nmi (168-170 m)

Table 1: Lookahead, distance, relative speed, buffer sizes, and probability of missed alert

and are traveling at 500 knots, they could collide in as few as 72 seconds.
It should also be noted that the upper bounds on the probabilities of missed alerts in this

table are high. However, this is not due to imprecision in the presented methods but to the
fact that the confidence intervals specified in DO-242A are for 95% confidence and provide
little knowledge of what is happening the other 5% of the time. These formulas could be
used to calculate the probability of missed alerts that are significantly smaller if more precise
confidence intervals were available for the positions and velocities of the aircraft.

6 Related Work and Conclusion

CD&R has been an area of active research since the last decade. In 2000, Kuchar and
Yang [14] presented a taxonomy of conflict detection and resolution modeling methods that
surveyed 68 different algorithms. One category in that taxonomy concerns the state prop-
agation method. Probabilistic CD&R approaches use stochastic methods on predicted tra-
jectory errors for estimating the probability of conflict or collision [2,18–20]. These methods
are generally used in ground systems as they are often computational intensive.

Non-probabilistic CD&R methods such as those based on flight plans or linear state
propagation use deterministic trajectory models. In these cases, safety buffers that increase
the separation minima are used to reduce the number of false alarms. Gazit and Powell
propose in [10] a separation standard based on the probability distribution functions of GPS
and radar errors. In [25], Zhao presents a semi-analytical approach to determine appropriate
separation minima between aircraft that takes into consideration wake-vortices and flight
technical errors. The paper defines the uncertainty region as the difference between the
measure and actual trajectories in an interval of time. The uncertainty region is an ellipsoid
and the interval time is the maximum between the surveillance interval and the time needed
for conflict avoidance. In [4], Consiglio et al. measured the impact of wind prediction to
determine the additional safety buffer needed to preserve separation. The study is based on
high-fidelity simulation. In the context of strategic conflict detection, Karr [12] describes
different types of prediction error and proposes an algorithm to detect conflicts between
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trajectories that uses a notion of dynamic safety buffers.
This paper concerns safety buffers in state-based CD&R methods. These methods use

the current state of the aircraft and a mass-point trajectory model (nominal trajectories,
according to Kurchar and Yang’s taxonomy) to alert a predicted violation of separation
minima. In airborne concepts, state-based CD&R systems are used as backup of more
advance separation assurance systems. For these kinds of systems, an approach for modeling
aircraft state information uncertainty is proposed. The approach is illustrated with models of
errors in GPS and ADS-B devices. However, other type of devices can be modeled in similar
ways. These probabilistic models used to estimate the probability of a missed alert. From
that estimation, analytical definitions of safety buffers are provided. These safety buffers
guarantee that state-based conflict detection algorithms do not miss any alerts. Numerical
examples of safety buffers for GPS and ADS-B parameters are given.

The analysis presented in this paper considers uncertainty in the current state informa-
tion and a nominal trajectory that is a linear projection of this state. Therefore, trajectory
uncertainties, such as navigation errors, are not part of the proposed uncertainty modeling
approach. This simplification yields analytical definitions of safety buffers that are appropri-
ate for state-based conflict detection. However, these safety buffers may be too conservative.
Future work will consider a trajectory prediction model that uses previous state information
of the aircraft.

The results presented in this paper have been mechanically checked using an interactive
theorem prover (PVS), which provides strong guarantees that the mathematical development
is correct. The use of a mechanical theorem prover requires a detailed description of the
problem and a meticulous proof process. This level of rigor is justified by the critical role that
aircraft separation plays in the overall safety of the next generation of air traffic management
systems.
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